Главная / Аналитика / Статьи о полимерах / Состав древесно-полимерных ком...
подписка
Свежие новости Свежие статьи Новые объявления
Получать HTML?

Состав древесно-полимерных композитов: общие свойства минеральных наполнителей

Минеральные наполнители, такие как карбонат кальция, тальк, кремнезем, весьма распространены в полимерной промышленности. Они часто, при стоимости 6-15 центов/фунт, заменяют значительно более дорогие полимеры, повышают жесткость наполненного продукта и придают полимеру более высокую огнестойкость. На мировом рынке наполнителей для пластмасс преобладают технический углерод (сажа) и карбонат кальция. Примерно из 15 млрд фунтов наполнителей в Америке и Европе около половины объема входят в состав эластомеров, одна треть — в термопласты, а остальные — в термореактивные материалы. Около 15% всех производимых пластмасс содержат наполнители.

Помимо стоимости, обычно рассматривают следующие свойства минеральных наполнителей (или должны рассматривать) при использовании их в качестве наполнителя в композитных материалах (свойства приведены без какого-либо определенного порядка):

  • химический состав;
  • коэффициент формы;
  • плотность (удельный вес);
  • размер частиц;
  • форма частиц;
  • распределение частиц по размерам;
  • площадь поверхности частиц;
  • содержание влаги, способность поглощать воду;
  • способность поглощать масло;
  • огнестойкие свойства;
  • влияние на механические свойства композитного материала;
  • влияние на вязкость расплава;
  • влияние на усадку расплава;
  • термические свойства;
  • цвет, оптические свойства;
  • влияние на выцветание и долговечность полимеров и композитов;
  • влияние на здоровье и безопасность.

Дадим несколько предварительных общих описаний, которые будут детализированы ниже на конкретных примерах минеральных (и смешанных) наполнителей.

Общие свойства минеральных наполнителей

Химический состав

Наполнители могут быть неорганическими, органическими или смешанными, например, Biodac, как описано выше. Biodac — это гранулированная смесь целлюлозного волокна, карбоната кальция и каолина (глина). Типичные неорганические наполнители могут быть простыми солями, типа карбоната кальция (СаСО3) или волластонита (CaSiO3), с точной химической структурой; сложными неорганическими материалами, типа талька [гидратированный силикат магния, Mg3Si4Ol0(OH)2] или каолина (гидратированный силикат алюминия, Al2O3-2SiO2-2H2O); или могут быть соединениями с неопределенным или переменным составом, типа слюды, глины и зольной пыли. Последнюю можно рассматривать как силикат алюминия с включениями других элементов.

Коэффициент формы

Это отношение длины частицы к ее диаметру. Для сферических или кубических частиц коэффициент формы равняется единице. Для частиц карбоната кальция коэффициент формы составляет обычно 1-3. Для талька коэффициент формы обычно находится в интервале 5-20. Для молотого стеклянного волокна он составляет от 3 до 25. Для слюды — 10-70. Для волластонита его значение между 4 и 70. Для рубленого стекловолокна — между 250 и 800. Для натуральных волокон, типа целлюлозы, коэффициент формы может быть от 20-80 до нескольких тысяч. Низкий коэффициент формы составляет менее 10. Однако перечисленные значения приведены для наполнителей, не переработанных в смесителе и/или экструдере. После переработки коэффициент формы может уменьшаться от нескольких дюжин и сотен до 3-10.

Плотность (удельный вес)

Хотя удельный вес минеральных наполнителей может изменяться в широком диапазоне, удельный вес наполнителей, которые применяются (или, вероятно, должны применяться) в ДПК, для всех высокий, около 2,1-2,2 (зольная пыль) и 2,6-3,0 г/см3 (карбонат кальция, тальк, каолин, слюда, глина). Biodac, гранулированная смесь карбоната кальция с каолином и целлюлозным волокном, имеет удельный вес 1,58 г/см3.

В табл.1 показано, как минеральные наполнители влияют на плотность наполненных полимеров по сравнению с древесным волокном.

Таблица 1. Влияние удельного веса наполнителей на плотность наполненного полимера. Целлюлозные волокна (древесная мука, рисовая шелуха) обычно имеют удельный вес 1,3 г/см3; карбонат кальция и тальк обычно имеют плотность 2,8 г/см3

* Соответствующие экспериментальные данные для наполненного полипропилена следующие: с 20% целлюлозных волокон, 0,98-1,00 г/см3; с 40% целлюлозных волокон, 1,08-1,10 г/см3; с 40% карбоната кальция или талька, 1,23-1,24 г/см3.

Можно видеть, что присутствие 20-40% минеральных наполнителей значительно повышает плотность наполненного ПЭВП и полипропилена по сравнению с полимерами, наполненными целлюлозным волокном.

Примечание. Эти расчеты могут быть сделаны, как показано в следующем примере. Для ПЭВП, наполненного 20% карбоната кальция, 100 г наполненного полимера содержат 20 г СаСО3 и 80 г полимера. Соответствующие объемные доли равны 20 г/2,8 г/см3 = 7,1429 см3 для СаСО3 и 80 г/0,96 г/см3 = 83,3333 см3 для ПЭВП. Общий объем наполненного полимера — 7,1429 см3 + 83,3333 см3 = 90,4762 см3. Поскольку масса этого образца — 100 г, удельный вес наполненного полимера -100 г/90,4762 см3 =1,105 г/см3.

Примечание. Как не нужно вычислять удельный вес композиционного материала. Обычная ошибка состоит в смешении объемных и массовых долей в вычислениях. Например, в вышеупомянутом случае для ПЭВП, наполненного 20% карбоната кальция, неверным был бы расчет полученого удельного веса 0,2 х 2,8 г/см3 + 0,8 х 0,96 г/см3 = 1,328 г/см3. Правильным ответом, как мы знаем, является 1,105 г/см3 (см. выше). Ошибкой было взять объемные доли 0,2 и 0,8 как массовые доли в полученной композиции.

Размер частиц

Для целей этого обсуждения наполнители можно разделить на крупные частицы (более 0,1-0,3 мм, 20-150 меш), частицы большого размера (около 0,1 мм или 100 мкм, 150-200 меш), частицы среднего размера (около 10 мкм, 250 меш), частицы маленького размера (около 1 мкм), тонкодисперсные частицы (около 0,1 мкм), и наночастицы (слоистые — толщиной 1 нм или 0,001 мкм, и длиной 200 нм или 0,2 мкм; интеркалированные — толщиной 30 нм, длиной 200 нм). Наночастицы не рассматриваются в качестве наполнителей, а скорее, в качестве добавок. Примерами частиц вышеупомянутых размеров являются Biodac (крупные частицы), молотый карбонат кальция (большой размер частиц), глина (средний размер частиц), осажденный CaCO3 (маленький размер частиц), некоторые специальные виды двуокиси кремния (мелкий размер частиц), расслаивающиеся частицы многослойных органоглин. Стоимость этих наполнителей увеличивается очень существенно при переходе от крупных и больших до маленьких и тонкодисперсных частиц, и особо — для наночастиц. Следовательно, только крупные и большие частицы наполнителей могут привести к экономии стоимости при замене полимера, если наполнители не придают композиционному материалу действительно полезные свойства, оправдывающие повышенную стоимость.

Форма частиц

Эта характеристика частично, но не полностью связана с коэффициентом формы частиц. При одинаковом коэффициенте формы, равном 1,0, частицы могут быть сферическими или кубическими, и сферические частицы (типа технического углерода, диоксида титана, окиси цинка) улучшают текучесть и уменьшают вязкость расплава полимеров и обеспечивают равномерное распределение напряжения в отвердевшем профиле, тогда как кубические частицы (гидроокись кальция) дают хорошее упрочнение профиля. Хлопья (каолин, слюда, тальк) облегчают ориентацию полимеров. Вытянутые частицы, типа волластонита, стекловолокна и целлюлозного волокна, древесной муки (волокна), уменьшают усадку и термическое расширение-сжатие, и в частности, упрочняют монолитный материал.

Распределение частиц по размерам

Частицы могут быть монодисперсными или обладают определенным распределением по размерам — широким, узким, бимодальным и так далее. Распределение может быть неоднородным, обычно имеет место смесь частиц различных размеров. Это свойство смеси частиц в значительной степени зависит от технологии измельчения и сортировки (просеивания) частиц. Широкое распределение или бимодальное распределение частиц минерального наполнителя могут быть полезными, поскольку они могут обеспечить лучшую плотность упаковки частиц в матрице. Распределение частиц по размерам может влиять на вязкость расплава.

Площадь поверхности частиц

Она непосредственно связана с «топографией» поверхности и пористостью наполнителя. Она измеряется в квадратных метрах на грамм наполнителя и может варьироваться от долей м2/г до сотен м2/г. Например, удельная поверхность волластонита изменяется от 0,4 до 5 м2/г, кремнезема — от 0,8 до 3,5 м2/г, целлюлозного волокна — около 1 м2/г, талька — от 2,6 до 35 м2/г, карбоната кальция — от 5 до 24 м2/г, каолина — от 8 до 65 м2/г, глины — от 18 до 30 м2/г, диоксида титана — от 7 до 162 м2/г, осажденной двуокиси кремния — от 12 до 800 м2/г. Удельная поверхность частиц очень сильно зависит от метода, который применяется для измерения площади. Чем меньше молекула, используемая для измерений, тем больше удельная поверхность, полученная на грамм материала. Однако, при смешении с расплавом полимера, маленький молекулярный размер пор в минеральном наполнителе является неподходящим. Большие открытые поры, напротив, могут обеспечить не только площадь адгезии расплава полимера, но также и дополнительное физическое взаимодействие между наполнителем и полимером после его затвердевания.

Влагосодержание: способность абсорбировать воду

Эти два свойства идут рука об руку и связаны до известной степени с «гигроскопичностью» наполнителя. Однако влагосодержание обычно отражает массу (процент) воды на единицу массы наполнителя в данных обстоятельствах (например, после или в процессе сушки), тогда как способность поглощать воду часто означает максимальное достижимое влагосодержание или влагосодержание после достижения кажущегося равновесия в условиях окружающей среды. Влагосодержание основной массы рисовой шелухи в летние месяцы может быть около 9,5 %масс. Влагосодержание высушенной рисовой шелухи может быть 0,2-0,5%. Высокое содержание влаги в наполнителе приводит к образованию пара в процессе компаундирования и экструзии, что может привести к высокой пористости (и низкой плотности) конечного экструдированного профиля. Это, в свою очередь, уменьшает его прочность и жесткость, и увеличивает скорость окисления в течение срока службы, следовательно, снижается долговечность.

Низкое содержание влаги в наполнителях обычно наблюдается в карбонате кальция и волластоните (0,01-0,5%), тальке и тригидрате алюминия, слюде (0,1-0,6%). Среднее содержание влаги может наблюдаться в гидроксиде титана (до 1,5%), глине (до 3%), каолине (1-2%) и Biodac (2-3%). Высокое влагосодержание часто обнаруживается в целлюлозном волокне (5-10%), древесной муке (до 12%) и зольной пыли (до 20%). Biodac поглощает до 120% воды при прямом контакте с избытком воды.

Способность абсорбировать масло

Эта свойство может быть полезным для гидрофобных полимеров, типа полиолефинов, поскольку гидрофобные наполнители могут показать хорошее взаимодействие с матрицей. Кроме того, гидрофобные наполнители могут очень существенно влиять на вязкость матрицы, следовательно, ее реологию и текучесть. Наполнители обычно абсорбируют масло в гораздо более высоких количествах по сравнению с водой. Карбонат кальция поглощает 13-21% масла, тригидрат алюминия поглощает 12-41% масла, диоксид титана 10-45%, волластонит 19-47%, каолин 27-48 %, тальк 22-51%, слюда 65-72% и древесная мука 55-60%. Biodac поглощает 150% масла по массе.

Как правило, если маслоемкость низкая, наполнитель не изменяет вязкость расплава в большой степени. Из-за этого тест на поглощение масла часто используется для характеристики влияния наполнителей на реологические свойства наполненных полимеров.

Огнестойкость

«Активные» антипирены, типа тригидрата алюминия или гидроксида магния, охлаждают область горения за счет выделения воды выше определенной температуры. Многие инертные наполнители, типа карбоната кальция, таль ка, глины, стекловолокна и так далее, могут замедлять распространение пламени только за счет «устранения топлива» для распространения пламени или замедлить выделение тепла. Однако они существенно не меняют температуру воспламенения. Они действуют скорее путем растворения топлива в твердой (полимерной) фазе. Карбонат кальция выделяет инертные газы (углекислый газ) при температуре около 825 °C, которая слишком высока для растворения горючей газообразной фазы, воспламеняющейся значительно ниже этой температуры.

Влияние на механические свойства композиционного материала

Минеральные наполнители обычно улучшают как прочность при изгибе, так и модуль упругости при изгибе наполненных пластмасс и ДПК (табл. 2), однако степень улучшения различна для прочности и модуля упругости при изгибе. Влияние на прочность при изгибе часто не более 10-20%. Влияние на модуль упругости при изгибе может достигать 200-400%, и это часто зависит от размера частиц наполнителя и его коэффициента формы. Чем выше содержание наполнителя и коэффициент формы, тем больше влияние наполнителя на модуль упругости при изгибе (хотя и не всегда, в частности, это относится к содержанию наполнителя).

На основании влияния наполнителей на прочность наполненных полимеров, наполнители могут подразделяться как раз на наполнители и армирующие наполнители.

Таблица 2. Влияние неорганических наполнителей и древесной муки на прочность при изгибе и модуль упругости при изгибе полипропилена (гомополимер)

Наполнители типа древесной муки, карбоната кальция, часто сохраняют прочность почти без изменения, обычно в пределах ±10% ненаполненного полимера. С армирующими наполнителями, такими как древесное волокно с высоким коэффициентом формы, стекловолокно, прочность наполненного полимера всегда увеличивается.

Таким образом, некоторые минеральные наполнители повышают прочность при изгибе полипропилена на 30-45%, тогда как древесная мука повышает прочность при изгибе того же полимера только на 7-10%. Влияние наполнителей на жесткость пластмасс намного более выражено, и минеральные наполнители повышают модуль упругости при изгибе полипропилена до 300%, а древесная мука повышает модуль упругости при изгибе того же полимера на 150-250%.

Прочность при растяжении чистого и наполненного полипропилена примерно одинакова, или несколько снижается при наполнении полимера древесной мукой (табл. 3).

Таблица 3. Влияние неорганических наполнителей и древесного волокна на прочность и модуль упругости при растяжении полипропилена (гомополимер)

Стекловолокно повышает прочность при растяжении полипропилена до 15%; тальк не дает почти никаких изменений; карбонат кальция и древесная мука снижают прочность при растяжении того же полимера на 15-30%. По отношению к модулю упругости при растяжении, повышение его составило до 3,6 раз (тальк, стекловолокно) и до 1,6-2,6 раз (древесная мука, карбонат кальция).

Трудно предсказать количественно, как на прочность при изгибе и модуль ДПК будет влиять введение минеральных наполнителей, поскольку могут вмешаться свойства и количество смазок (табл. 4).

В табл. 4. показано, что, хотя прочность и модуль при изгибе увеличиваются с увеличением содержания талька по сравнению с этими же свойствами с древесной мукой, смазка снижает эффект.

Таблица 4. Влияние талька на прочность и модуль упругости при изгибе композиционного материала древесная мука-полипропилен в присутствии различных количеств смазки (данные были предоставлены Luzenac America)

Влияние на вязкость расплава

Она зависит от размера частиц, формы частиц, коэффициента формы, удельной массы наполнителя и других свойств наполнителей. Следующий пример иллюстрирует это «общее» свойство наполнителей. Когда полипропилен, имеющий показатель текучести расплава 16,5 г/10 мин., наполнили небольшим количеством минерального и целлюлозного наполнителей, его ПТР (в г/10 мин.) был следующим:

  • 40% CaCO315,1;
  • 40% талька 12,2;
  • 40% стекловолокна 9,6;
  • 20% древесной (сосновой) муки 8,6;
  • 40% древесной муки 1,9.

Очевидно, древесная мука оказывает намного большее влияние на вязкость расплава по сравнению с неорганическими наполнителями.

Влияние на технологическую усадку

Она, очевидно, зависит от содержания наполнителей (следовательно, содержания полимера) и способности наполнителей препятствовать кристаллизации полимера. Чем меньше кристаллиты в наполненном полимере, тем меньше усадка. Чем меньше полимера в наполненном композите, тем меньше усадка. При одинаковом содержании наполнители с нуклеирующим эффектом приводят к меньшей технологической усадке. Например, если полипропилен, имеющий технологическую усадку 1,91%, был наполнен небольшим количеством минерального наполнителя и целлюлозным волокном, его технологическая усадка стала следующей :

  • 40% CaCO3 1,34%;
  • 20% древесного — волокна 0,94%;
  • 40% талька - 0,89%;
  • 40% древесного волокна — 0,50%;
  • 40% стекловолокна —0,41%.

Видно, что все наполнители снижают технологическую усадку, причем древесная мука показывает лучшие результаты по сравнению с карбонатом кальция и тальком, но более высокую усадку по сравнению со стеклянным волокном.

Термические свойства

Термическое расширение-сжатие неорганических наполнителей значительно ниже по сравнению с полимерами. Поэтому, чем выше содержание наполнителя, тем ниже коэффициент расширения-сжатия композиционного материала. Многие неорганические неметаллические наполнители уменьшают теплопроводность композиционного материала. Например, по сравнению с теплопроводностью алюминия (204 Вт/град-К-м) для талька она составляет 0,02, диоксида титана 0,065, стекловолокна 1 и карбоната кальция 2-3. Поэтому неметаллические минеральные наполнители являются скорее теплоизоляторами, чем проводниками тепла. Это свойство наполнителей влияет на текучесть наполненных полимеров и композиционных материалов на полимерной основе при экструзии.

Цвет: оптические свойства

Цвет наполнителей должен непременно учитываться при их высоком содержании, особенно если необходимо изготовить профиль светлых тонов. Однако композиционные материалы обычно содержат достаточно многие красителей для предотвращения окраски наполнителями, за исключением очень темных, типа технического углерода. Наполнители дают непрозрачность продукта, что является несущественным фактором в цветных композиционных материалах.

Влияние на выцветание и долговечность полимеров и композитов

Минеральные наполнители часто содержат примеси (типа свободных металлов), которые являются катализаторами термо- и/или фотоокисления наполненного полимера. Эта тема будет рассматриваться более подробно в главе 15. Здесь мы дадим только два примера выцветания наполненного CaCO3 ПЭВП и полипропилена, с 76 и 80 %масс. наполнителя, соответственно. Матрица имела показатель текучести расплава, равный 1 г/10 мин. (ПЭВП) и 8 г/10 мин. (полипропилен). Озоление обоих наполненных полимеров при 525 °C показало содержание золы 76,0±0,1% (ПЭВП-CaCO3) и 79,9±0,1% (ПП-CaCO3). Через 250 часов в атмосферной камере (Q-SUN 3000, УФ фильтр: дневной свет, УФ датчик: 340, 0,35 Вт/м2, черная пластина 63 °C, ASTM G155-97, цикл 1: свет 1:42, свет + распыление 0:18) коэффициент обесцвечивания увеличился с 83,7 до 84,3 (?L = +0,6) [ПЭВП-CaCO3 76%] и с 85,6 до 88,8 (?L = +3,2) [ПП-CaCO3 80%]. Поскольку карбонат кальция в этом эксперименте имел одинаковое происхождение, повышенное обесцвечивание должно быть отнесено к более высокой чувствительности полипропилена к термо- и/или фотоокислению в поверхностном слое.

Другой пример, показывающий здесь влияние минеральных наполнителей на окислении ДПК (на основе ВОИ, то есть, времени окислительной индукции), — это долговечность экспериментальных террасных досок GeoDeck, изготовленных с тальком и слюдой в дополнение к обычному составу. Доска GeoDeck без добавления антиоксидантов имела ВОИ 0,50 мин. В присутствии 3 и 10% талька значение ВОИ составило 0,51 и 0,46 минут, соответственно. В присутствии 12,5 и 28,5% слюды значения ВОИ были 0,17 и 0,15 мин., соответственно. Это означает, что в последних двух примерах слюда фактически исключила стойкость (хотя она очень низкая) композиционного материала к окислению.

Здоровье и безопасность

Некоторые наполнители являются опасными материалами и требуют специального обращения и переработки. Ниже перечислены некоторые наполнители, которые ис пользуются или легко могут использоваться в композиционных материалах, классифицированных согласно основным параметрам, принятым в промышленности. Индексы означают: нет опасности, 0; небольшая опасность, 1; умеренная, 2; серьезная, 3; чрезвычайная опасность, 4. Коды хранения: общий, оранжевый; специальный, синий; опасный, красный.

  • Здоровье: зольная пыль и древесная мука, не классифицируются; карбонат кальция, каолин, 0; гидроксид алюминия, глина, стекловолокно, гидроксид магния, слюда, кварц, тальк, волластонит, 1.
  • Воспламеняемость: зольная пыль и древесная мука, не классифицируются; все другие, перечисленные выше, 0.
  • Реактивность: зольная пыль и древесная мука, не классифицируются; все другие, перечисленные выше, 0.
  • Цветовой код хранения: древесная мука, не классифицируется; все другие, перечисленные выше, оранжевый.
  • Токсичность (мг/кг): все перечисленные выше не классифицируются; исключение — гидроксид алюминия, 150.
  • Канцерогенность: все перечисленные выше, нет (кроме талька — если содержит асбест).
  • Силикоз: карбонат кальция, глина, слюда, да; все перечисленные выше, нет.
  • Среднее взвешенное время (СВВ, среднее значение воздействия в течение 8-часовой рабочей смены), в мг/м3: тальк, 2; слюда, 3; зольная пыль, карбонат кальция, стекловолокна, каолин, кремнезем, древесная мука, 10; гидроксид алюминия, глина, гидроксид магния, волластонит, не классифицируется.

Как видно, перечисленные наполнители обычно рассматривают как достаточно безопасные, если это не обозначено особо.

А.А. Клёсов

Источник: «Древесно-полимерные композиты», издательство НОТ

 
[an error occurred while processing the directive]
  • 0
  • 1
  • 2
Оперативность работы

Мы знаем цену времени и дорожим им. Оперативность в работе и своевременное информирование об изменениях дает временное преимущество и позволяет экономить время для наших партнеров. Быстро — не значит плохо. Быстро — значит профессионально!

News image
Стабильность

Качество услуг, предоставляемых нами, персонификация в общении и ориентация на особенности рабочих условий клиента, дает нашим Заказчикам уверенность в надежности компании ООО «Название компании». Благодаря этому из большинства обращающихся за нашими услугами компаний, значительная часть становится нашими постоянными партнерами.

News image
Финансовая надежность

Мы являемся компанией, которая гарантирует полную прозрачность всех финансовых операций. Компания дорожит своей репутацией «надежного партнера» и никогда не станет ей рисковать.

News image